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CHAPTER

ONE

INTRODUCTION

This note summarizes some developing thoughts on analyzing data that involves a student exploring a multi-parameter
space.

1
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2 Chapter 1. Introduction



CHAPTER

TWO

ENTROPY, CORRELATION, OR SOMETHING ELSE

2.1 Why?
What is the sign that a student is learning fruitfully in a given learning activity in which a set of parameters can be
varied by the student?

One might rule out an effective learning if all knobs available are turned in a chaotic manner.

One might also rule out an effective learning if only one knob is turned and it is turned only by a minute amount or too
few times.

If the pattern involves some initial exploration of all knobs, followed by a settling down on one knob, which is explored
extensively and systematically, then this might be recognized easily as a great learning pattern by a human.

The question that we ask here is—can we develop a metric, or a set of metrics, that will automatically summarize these
differences between these and other different learning patterns?

2.2 Entropy
Suppose that a student explores one axis in the full parameter space (which is four dimensional in the climate game).

1. The parameter variation is systematic.

2. The total range of the parameter variation is reasonably large.

3. The number of trials is reasonably large.

ò Note

How large is “reasonably large”? A priori, we may or may not know the answer. In the latter case,
maybe we can determine the answer from the data, choosing something like “greater than the median.”

Entropy
A measurement of the disorderliness of the whole set of data points. Too large an entropy is obviously bad. But,
too small an entropy is also bad, probably, in some sense, which may or may not be captured by the analysis.

Correlation
A measurement of the point to point relation.

3
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CHAPTER

THREE

VARIOUS ENTROPY CONCEPTS IN THE LITERATURE

3.1 Gibbs entropy

𝑆𝐺 = −𝑘𝐵
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖

This is the thermodynamic entropy of an ensemble distribution, where each state in the ensemble is denoted by the
state index 𝑖.

ò Note

log without any subscript stands for the natural logarithm in this note.

Of course, this becomes the so-called Boltzmann entropy, 𝑘𝐵 log Γ where Γ is the number of available microstates in
the micro-canonical ensemble case.

3.2 Shannon entropy
Here, we can consider a certain set of words, each of which can be represented in a fixed number 𝑀 of bits. A random
word can be assigned an index 𝑖, where 0 ≤ 𝑖 < 𝑁 = 2𝑀 . The word distribution can be described as a probability
distribution 𝑝𝑖, given by 𝑛𝑖/𝑁 , where 𝑛𝑖 is the number of occurrences of word 𝑖.

𝑆𝑆 = −
∑︁
𝑖

𝑝𝑖 log2 𝑝𝑖

defines the Shannon entropy, and gives the numbers of bits to express all words in the set. So, one may call this a
measure of the information content.

3.3 Tsallis entropy
This is a formulation of a non-additive entropy.

𝑆𝑇 =
1−

∑︀
𝑖 𝑝

𝑞
𝑖

𝑞 − 1

where the parameter 𝑞 defines the non-additivity of the entropy. Namely, if 𝑝(𝐴,𝐵) = 𝑝(𝐴)𝑝(𝐵) (two sets 𝐴 and 𝐵
are independent), then the Tsallis entropy is not additive. Rather it is given by, as can be shown easily,

𝑆𝑇 (𝐴 ∪𝐵) = 𝑆𝑇 (𝐴) + 𝑆𝑇 (𝐵) + (𝑞 − 1)𝑆𝑇 (𝐴)𝑆𝑇 (𝐵).

If 𝑞 → 1, then 𝑆𝑇 → 𝑆𝑆/ log 2 = 𝑆𝐺/𝑘𝐵 .

Tsallis entropy is an interesting concept, and is expected to be very relevant to complex systems. For now, though, we
shall limit ourselves to the Shannon entropy.

5
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3.4 Entropy—some general properties
From here on, we will use log instead of log2 to denote the Shannon entropy. Also, we shall use 𝑆 without any subscript
to mean the Shannon (or Gibbs) entropy.

Consider the joint entropy

𝑆𝑁 = 𝑆(𝑋1, ..., 𝑋𝑁 ) = −
∑︁

𝑋1,...,𝑋𝑁

𝑝(𝑥1, ..., 𝑥𝑁 ) log 𝑝(𝑥1, ..., 𝑥𝑁 )

where 𝑥𝑖 is a random variable and 𝑋𝑖 is the corresponding set. Consider for example two variables, 𝑥 and 𝑦.

𝑆(𝑋,𝑌 ) = −
∑︀

𝑥,𝑦 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦),

= −
∑︀

𝑥,𝑦 𝑝(𝑥|𝑦)𝑝(𝑦) log [𝑝(𝑥|𝑦)𝑝(𝑦)] ,
= −

∑︀
𝑦

∑︀
𝑥 𝑝(𝑦)𝑝(𝑥|𝑦) log 𝑝(𝑥|𝑦)−

∑︀
𝑦 𝑝(𝑦) log 𝑝(𝑦).

The first term is the so-called conditional entropy, 𝑆(𝑋|𝑌 ), while the second term is just the entropy of a single variable
𝑆(𝑌 ). Now, by substituting 𝑋 = 𝑋𝑁 and 𝑌 = 𝑋1, ..., 𝑋𝑁−1, it is clear that we get

𝑆𝑁 = 𝑆(𝑋1, ..., 𝑋𝑁 ) =

𝑁∑︁
𝑖=1

𝑆(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, ..., 𝑋1)

It stands to reason that as more random variable is added the entropy increases.

From now on, let us interpret the indices 1, ..., 𝑁 as time indices. That is, we consider a stochastic process.

The entropy rate of a stochastic process is defined as

𝑠(
→
𝑋) = lim

𝑁→∞

𝑆𝑁

𝑁
.

Also, define the conditional entropy limit

𝑆𝑐(𝑋) = lim
𝑁→∞

𝑆(𝑋𝑁 |𝑋𝑁−1, ..., 𝑋1).

A stochastic process is referred to as a stationary process, if the joint probability distribution is invariant upon the
translation in the time index, i.e,

𝑝(𝑋1 = 𝑥1, ..., 𝑋𝑁 = 𝑥𝑛) = 𝑝(𝑋1+𝑙 = 𝑥1, ..., 𝑋𝑁+𝑙 = 𝑥𝑛).

It is now easy to see that, for a stationary process, 𝑆𝑐 is a well-defined convergent quantity, since

𝑆(𝑋𝑁 |𝑋𝑁−1, ..., 𝑋1) ≤ 𝑆(𝑋𝑁 |𝑋𝑁−1, ..., 𝑋2) = 𝑆(𝑋𝑁−1|𝑋𝑁−2, ..., 𝑋1),

where the inequality is due to less conditioning (the difference is the negative of the mutual entropy, 𝐼(𝑋,𝑌 ) =∑︀
𝑥,𝑦 𝑝(𝑥, 𝑦) log

(︁
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)

)︁
, which is known to be non-negative due to the “Jensen’s inequality”) and the equality is

due to the stationary process.

If 𝑆𝑐(𝑋) is well-defined (as for a stationary process), then it follows that

𝑆𝑐(𝑋) = 𝑠(
→
𝑋),

since

𝑆𝑁 → 𝑁𝑆𝑐 as 𝑁 → ∞.

Also, it follows that

𝑆𝑁+1 − 𝑆𝑁 → 𝑆𝑐(𝑋) = 𝑠(
→
𝑋).

6 Chapter 3. Various entropy concepts in the literature
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3.5 Kolmogorov entropy
The so-called Kolmogorov or Kolmogorov-Sinai entropy originated from the chaos theory and, thus, it con-
cerns the entropy of a dynamical process. The essence of this entropy is summarized well in here
[mathworld-Kolmogorov-Entropy]. As much (or little) as the chaos theory is capable of explaining the thermody-
namics entropy, this entropy is expected to become Gibbs entropy (or not).

Let us use the language of the classical mechanics in physics, which can be, of course, generalized to the language of
an abstract mathematical mapping, if one wishes.

In the Hamiltonian formulation of the Newtonian mechanics, the time evolution of a Newtonian system is represented
by a mapping in the phase space. Let 𝐷 be the dimension of the phase space. For example, if there are five particles
in three spatial dimensions, then 𝐷 = 5× 2× 3 = 30, since the phase space is built by attaching a momentum axis to
any spatial axis (thus 2× 3 is the dimension of the phase space for a single particle in three physical dimensions).

Now consider dividing the phase space into vary small elements, each of which has a linear dimension 𝜖 along any
axis: so each volume element is given by 𝜖𝐷. Each volume element can be given an index 𝑖. Define

𝑆𝑛 = −
∑︁

𝑖0,...,𝑖𝑛

𝑝𝑖0,...,𝑖𝑛 log 𝑝𝑖0,...,𝑖𝑛

where 𝑛 is the time step index (time 𝑡 = 𝑛𝜏 , where 𝜏 is a small time increment—see below), and 𝑝𝑖0,...,𝑖𝑛 is the
probability that each of the string of volume elements 𝑖0, ..., 𝑖𝑛 contains a trajectory.

The Kolmogorov entropy is then defined as

𝑆𝐾 = lim
𝜏→0

lim
𝜖→0

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑛=0

(𝑆𝑛+1 − 𝑆𝑛) .

Note that 𝑆𝑛+1−𝑆𝑛 is the number of additional bits required, going from step 𝑛 to the next step, to describe the motion
of all states in the ensemble. Since the sum is over adjacent differences, we get

𝑆𝐾 = lim
𝜏→0

lim
𝜖→0

lim
𝑁→∞

𝑆𝑁 − 𝑆0

𝑁
= lim

𝜏→0
lim
𝜖→0

lim
𝑁→∞

𝑆𝑁

𝑁
.

So, in the language of the previous section, the Kolmogorov entropy is the entropy rate, which is equal to the conditional
entropy limit, assuming that the latter exists.

3.6 Approximate entropy (practical entropy)
While the Kolmogorov entropy is well-defined mathematically, and it would be computable for a complex system with
a bit of physics constraints, it is not readily computable for practical use. Therefore, some practical entropy concepts
have been invented.

The concept of approximate entropy has been proposed by [Pincus] as a practical way to compute a quantity that
approximates the Kolmogorov entropy.

Here, we consider a one-dimensional time series, consisting of 𝑁 numbers

𝑢0, 𝑢1, 𝑢1, ..., 𝑢𝑛, ..., 𝑢𝑁−1.

We choose a positive integer 𝑚 and a positive real number 𝑟. If the difference between two adjacent value of 𝑢 is less
than 𝑟, then we will designate them to be the same. So, 𝑟 plays the role of 𝜖 in the definition of the Kolmogorov entropy,
except that here we do not take the zero limit.

ò Note

In this section and the following section, “the same” means “the same within tolerance 𝑟.”

3.5. Kolmogorov entropy 7
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Form 𝑁 −𝑚+ 1 vectors, →
𝑥𝑖,𝑚, as follows.

→
𝑥0,𝑚 = (𝑢0, . . . , 𝑢𝑚−1),

...
→
𝑥𝑖,𝑚 = (𝑢𝑖, . . . , 𝑢𝑚+𝑖−1),

...
→
𝑥𝑁−𝑚,𝑚 = (𝑢𝑁−𝑚, . . . , 𝑢𝑁−1).

Now, we have a mapping in an 𝑚-dimensional space. For a given →
𝑥𝑖,𝑚, we can count the number of vectors, →

𝑥𝑗,𝑚, that
are the same as →

𝑥𝑖,𝑚, i.e., if the distance between them is less than 𝑟. The distance between vectors can be defined by a
suitable metric such as the maximum of the component-wise differences. Let the number of vectors, →

𝑥𝑗,𝑚, that are the
same as →

𝑥𝑖,𝑚 be 𝐸𝑖,𝑚. Then, define

𝐶𝑖,𝑚 =
𝐸𝑖,𝑚

𝑁−𝑚+1 ,

Φ𝑚(𝑟) = 1
𝑁−𝑚+1

∑︀𝑁−𝑚
𝑖=0 log𝐶𝑖,𝑚.

The probability 𝐶𝑖,𝑚 is the probability that a randomly chosen vector →
𝑥𝑗,𝑚 is the same as →

𝑥𝑖,𝑚. Note that 𝑗 = 𝑖 is
included in this consideration. In particular, 𝐶𝑖,𝑚 is guaranteed to be positive since 𝐸𝑖,𝑚 ≥ 1 for the inclusion of the
self-match.

The approximate entropy is defined as

𝑆𝑎𝑝 = Φ𝑚(𝑟)− Φ𝑚+1(𝑟).

Since 𝑆𝑎𝑝 = 1
𝑁−𝑚+1

∑︀𝑁−𝑚
𝑖=0 log𝐶𝑖,𝑚 − 1

𝑁−𝑚

∑︀𝑁−𝑚−1
𝑖=0 log𝐶𝑖,𝑚+1, it is easy to see that, for large 𝑁 , 𝑆𝑎𝑝 ≈

1
𝑁−𝑚

∑︀𝑁−𝑚−1
𝑖=0

(︁
− log

𝐸𝑖,𝑚+1

𝐸𝑖,𝑚

)︁
. Here, 𝐶𝑖,𝑚+1/𝐶𝑖,𝑚(≈ 𝐸𝑖,𝑚+1/𝐸𝑖,𝑚) is the conditional probability that if a vector

is the same as →
𝑥𝑖,𝑚 it remains the same as →

𝑥𝑖,𝑚+1 at the next time step on average. The approximate entropy is the
average of the negative log of this conditional probability; so it is a highly convolved quantity, although it is clear
that it codifies the complexity of the dynamics. Using this approximate formula, it is clear that, for large 𝑁 , we get
𝑆𝑎𝑝 ≤ log(𝑁 −𝑚+ 1) ≈ log(𝑁 −𝑚), since the entropy is maximized if 𝐸𝑖,𝑚 = 𝑁 −𝑚+ 1 and 𝐸𝑖,𝑚+1 = 1.

More precisely speaking, we see that, for any value of 𝑁 , Φ𝑚 ≤ 0 and Φ𝑚+1 ≥ log 1
𝑁−𝑚 . And so, actually,

𝑆𝑎𝑝 ≤ log(𝑁 −𝑚)

for any value of 𝑁 .

Is the approximate entropy non-negative? This is not the case. Consider the case then 𝐸𝑖,𝑚 = 1. In this case,
necessarily 𝐸𝑖,𝑚+1 = 1 also. Then, we get Φ𝑚 = − log(𝑁 − 𝑚 + 1) and Φ𝑚+1 = − log(𝑁 − 𝑚). Therefore,
𝑆𝑎𝑝 = log 𝑁−𝑚

𝑁−𝑚+1 < 0. As 𝑁 → ∞, this value is given by ≈ − 1
𝑁−𝑚+1 . Let us do some more analysis.

𝑆𝑎𝑝 =
1

𝑁 −𝑚+ 1

𝑁−𝑚∑︁
𝑖=0

log
𝐸𝑖,𝑚

𝑁 −𝑚+ 1
− 1

𝑁 −𝑚

𝑁−𝑚−1∑︁
𝑖=0

log
𝐸𝑖,𝑚+1

𝑁 −𝑚

=
log

𝐸𝑁−𝑚,𝑚

𝑁−𝑚+1

𝑁 −𝑚+ 1
+

1

𝑁 −𝑚+ 1

𝑁−𝑚−1∑︁
𝑖=0

log
𝐸𝑖,𝑚

𝑁 −𝑚+ 1
− 1

𝑁 −𝑚

𝑁−𝑚−1∑︁
𝑖=0

log
𝐸𝑖,𝑚+1

𝑁 −𝑚

≥ 1

𝑁 −𝑚+ 1

(︃
log

𝐸𝑁−𝑚,𝑚

𝑁 −𝑚+ 1
+

𝑁−𝑚−1∑︁
𝑖=0

log
𝐸𝑖,𝑚(𝑁 −𝑚)

𝐸𝑖,𝑚+1(𝑁 −𝑚+ 1)

)︃

≥ 1

𝑁 −𝑚+ 1

(︃
log

1

𝑁 −𝑚+ 1
+ (𝑁 −𝑚) log

𝑁 −𝑚

𝑁 −𝑚+ 1
+

𝑁−𝑚−1∑︁
𝑖=0

log
𝐸𝑖,𝑚

𝐸𝑖,𝑚+1

)︃

≥ 1

𝑁 −𝑚+ 1

(︂
log

1

𝑁 −𝑚+ 1
+ (𝑁 −𝑚) log

𝑁 −𝑚

𝑁 −𝑚+ 1

)︂
≥ 1

𝑁 −𝑚+ 1

(︁
(𝑁 −𝑚) log(𝑁 −𝑚)− (𝑁 −𝑚+ 1) log(𝑁 −𝑚+ 1)

)︁
.

8 Chapter 3. Various entropy concepts in the literature
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So, as 𝑁 → ∞, 𝑆𝑎𝑝 ≥ − log(𝑁−𝑚)
𝑁−𝑚+1 . That is, the actual minimum value of 𝑆𝑎𝑝 may arise when 𝐸𝑖,𝑚 ∼ 𝑁 −𝑚, not

when 𝐸𝑖,𝑚 = 1, and 𝐸𝑖,𝑚+1 = 𝐸𝑖,𝑚 or 𝐸𝑖,𝑚 − 1. However, going back to the first expression, it is easy to see that
even in these cases, 𝑆𝑎𝑝 ≈ − 𝑂(1)

𝑁−𝑚+1 . So, the factor log(𝑁 − 𝑚) in the numerator arises from the first inequality
estimation step in the above analysis, where 1/(𝑁 −𝑚) is replaced by 1/(𝑁 −𝑚+1). So, the minimum of 𝑆𝑎𝑝 seems
to be − 𝑂(1)

𝑁−𝑚+1 , rather than − log(𝑁−𝑚)
𝑁−𝑚+1 . So,

− 𝑂(1)

𝑁 −𝑚+ 1
≤ 𝑆𝑎𝑝 ≤ log(𝑁 −𝑚).

3.7 Sample entropy (practical entropy)
Another practical entropy concept is the sample entropy.

This entropy has been suggested by [Richman-and-Moorman] as an improvement over 𝑆𝑎𝑝 . In this work, Richman and
Moorman argue successfully that the self-match (𝐸𝑖,𝑚 ≥ 1) included in the definition of 𝑆𝑎𝑝 gives it a bias. Namely,
𝑆𝑎𝑝 is always less than the correct value, which can be obtained only in the limit of zero 𝑟 and infinite values of 𝑁 and
𝑚. They show that the systematic error of the practical entropy due to this bias becomes pronounced when a small 𝑟
value is used.

The strategy that they take to correct this bias is the following.

1. Do not consider the 𝑗 = 𝑖 case when counting vectors that are the same as →
𝑥𝑖,𝑚. So, now, 𝐸𝑖,𝑚 can be zero.

2. Define the sample entropy as

𝑆𝑠𝑎 = − log

(︂
𝐴𝑚

𝐵𝑚

)︂
= − log

(︃
1

𝑁−𝑚

∑︀𝑁−𝑚−1
𝑖=0 𝐴𝑖,𝑚

1
𝑁−𝑚

∑︀𝑁−𝑚−1
𝑖=0 𝐵𝑖,𝑚

)︃
= − log

(︃∑︀𝑁−𝑚−1
𝑖=0 𝐸𝑖,𝑚+1∑︀𝑁−𝑚−1
𝑖=0 𝐸𝑖,𝑚

)︃
.

Here, there are subtle changes in the summation indices compared to those of the approximate entropy. Both in the
numerator and in the denominator, the index 𝑖 goes from 0 to 𝑁−𝑚−1, counting only the first 𝑁−𝑚 vectors whether
we are considering the 𝑚 case (denominator) or the 𝑚+ 1 case (numerator). The symbols 𝐴𝑖,𝑚 and 𝐵𝑖,𝑚 are defined
as

𝐴𝑖,𝑚 =
𝐸𝑖,𝑚+1

𝑁 −𝑚− 1
,

𝐵𝑖,𝑚 =
𝐸𝑖,𝑚

𝑁 −𝑚− 1
.

So, 𝐵𝑖,𝑚 is the probability that any →
𝑥𝑗 ̸=𝑖,𝑚 is the same as →

𝑥𝑖,𝑚. Similarly, 𝐴𝑖,𝑚 is the probability that any →
𝑥𝑗 ̸=𝑖,𝑚+1 is

the same as →
𝑥𝑖,𝑚+1 for 𝑗 = 0 through 𝑁 −𝑚− 1.

𝐵𝑚 (𝐴𝑚) is the probability that two sequences will match 𝑚 (𝑚 + 1) points. And so, the sample entropy is sort of
like the approximate entropy except that (i) logarithm is taken outside all sums, and (ii) the counting parameter 𝐸𝑖,𝑚

avoids self-matches.

It turns out that the sample entropy does well for small 𝑟 values, while at the same time it suffers a problem of no value
soon if 𝑟 becomes too small (see Fig. 2 of their paper). For instance, with 𝑁 = 100 and 𝑚 = 2, the two are basically
the same if 0.5 ≤ 𝑟 ≤ 1 but 𝑆𝑠𝑎 does much better if 0.2 ≤ 𝑟 ≤ 0.5. If 𝑟 ≤ 0.2, 𝑆𝑠𝑎 cannot be defined (because 𝐴𝑚 or
𝐵𝑚 can be zero), while 𝑆𝑎𝑝 gives a strongly biased incorrect result.

Figure 1 of [Costa-PRB] has a nice simple explanation for how to calculate the sample entropy for a real data set.

Does the sample entropy have any upper maximum? Strictly speaking, the answer is no, since 𝑆𝑠𝑎 → +∞ if 𝐸𝑖,𝑚+1 =
0 while

∑︀
𝑖 𝐸𝑖,𝑚 > 0. However, if we limit ourselves to cases when the sample entropy is well-defined, that is, if we do

not consider cases where the numerator
∑︀

𝑖 𝐸𝑖,𝑚+1 or the denominator
∑︀

𝑖 𝐸𝑖,𝑚 is zero, then we see that the sample
entropy has maximum possible value of 2 log(𝑁 −𝑚) (when

∑︀
𝑖 𝐸𝑖,𝑚+1 = 1 and

∑︀
𝑖 𝐸𝑖,𝑚 = (𝑁 −𝑚)(𝑁 −𝑚)).

So,

0 ≤ 𝑆𝑠𝑎 ≤ 2 log(𝑁 −𝑚).

3.7. Sample entropy (practical entropy) 9
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3.8 Renyi entropy
According to [Costa-PRB], the difference between 𝑆𝑎𝑝 and 𝑆𝑠𝑎 can be related to the Renyi entropy,

𝑆𝑅(𝑞) =
log(

∑︀
𝑖 𝑝

𝑞
𝑖 )

1− 𝑞
.

According to [Costa-PRB] (and its reference 21, which is not available by UC lib), 𝑆𝑎𝑝 approximates the Renyi entropy
of order 𝑞 = 1, while 𝑆𝑠𝑎 approximates the Renyi entropy of order 𝑞 = 2.

All this sounds a bit cryptic to me at this point, since I do not have reference 21 in my hand and since [Costa-PRB]
discusses this point only in passing.

In any case, note that this Renyi entropy looks somewhat reminiscent of the Tsallis entropy above. They have in common
that when 𝑞 → 1 they converge to the Shannon entropy.

3.9 Multi-scale entropy analysis
In this work [Costa-PRL], a simple coarse-graining idea is used to calculate the entropy as a function of coarse-graining
scale. That is, the raw data 𝑢𝑖 are converted to coarse-grained data 𝑦𝑖 with coarse-graining scale 𝜉.

𝑦𝜉,𝑖 =
1

𝜉

(𝑖+1)𝜉−1∑︁
𝑗=𝑖𝜉

𝑢𝑗 .

In this equation, 𝑗 = 0, ..., 𝑁 − 1, while 𝑖 = 0, ..., (𝑁/𝜉)− 1.

Applied to the heartbeat data, the multi-scale entropy analysis is shown to be able to discern an unhealthy heart condition
from a healthy heart condition only if the large scale correlation is included in the analysis by use of a large coarse-
graining scale. It is demonstrated that the analysis with no coarse-graining can lead to a completely incorrect result
(Figure 3 of [Costa-PRL]).

10 Chapter 3. Various entropy concepts in the literature
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